Instances as Queries

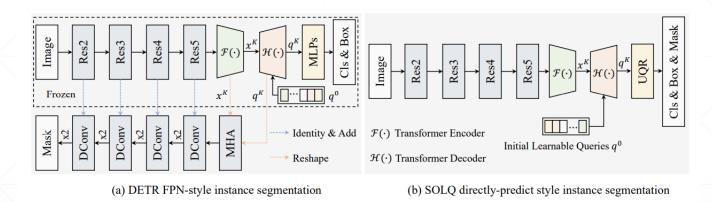
Yuxin Fang^{1*}, Shusheng Yang^{1,2}*, Xinggang Wang¹*, Yu Li², Chen Fang³, Ying Shan², Bin Feng¹, Wenyu Liu¹

¹School of EIC, Huazhong University of Science & Technology ²Applied Research Center (ARC), Tencent PCG ³Tencent

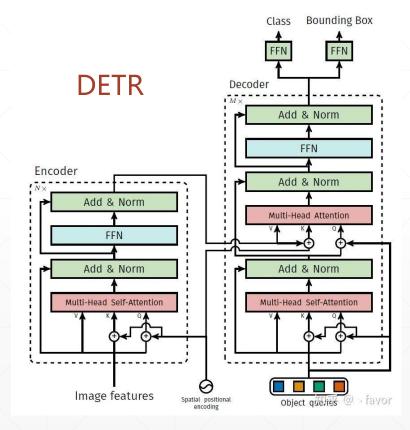
Mengxue

Motivation

query based object detection frameworks achieve comparable performance

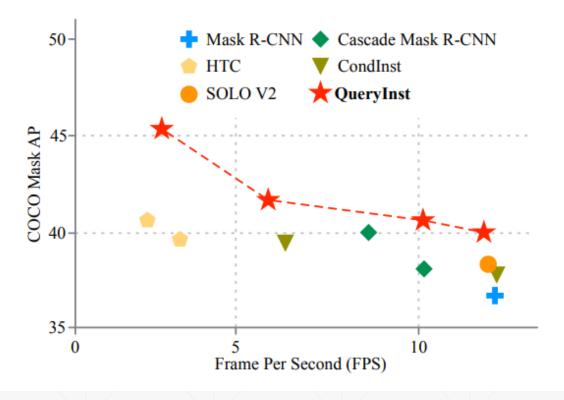


- How to fully leverage query to perform instance segmentation remains an open problem
- The gap of mask Rol feature and object queries



Contribution

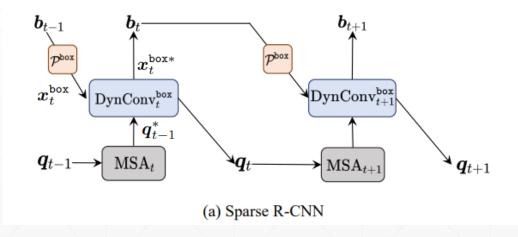
- We attempt to solve instance segmentation from a new perspective that uses parallel dynamic mask heads in the query based end-to-end detection framework.
- We set up a task-joint paradigm for question by leveraging the share
- We extend the QueryInst to video instanding a vanilla track head.

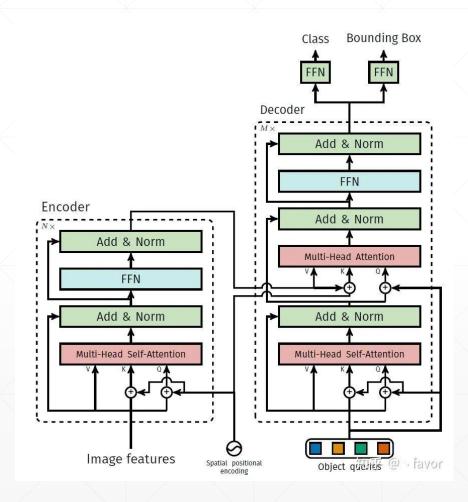


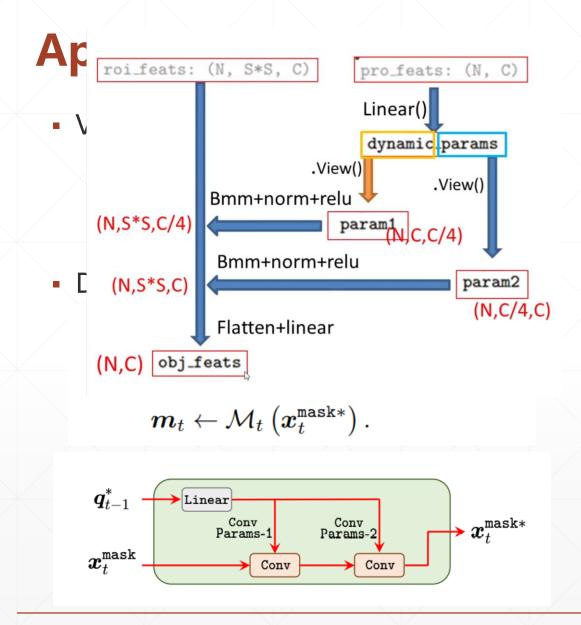
Approach

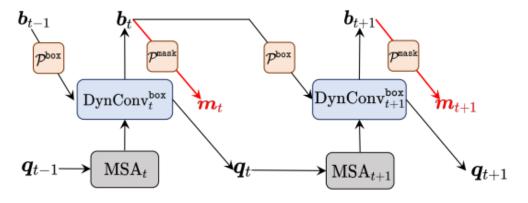
Query based object detector

$$\begin{split} \boldsymbol{x}_{t}^{\text{box}} &\leftarrow \mathcal{P}^{\text{box}}\left(\boldsymbol{x}^{\text{FPN}}, \boldsymbol{b}_{t-1}\right), \\ \boldsymbol{q}_{t-1}^{*} &\leftarrow \text{MSA}_{t}\left(\boldsymbol{q}_{t-1}\right), \\ \boldsymbol{x}_{t}^{\text{box*}}, \boldsymbol{q}_{t} &\leftarrow \text{DynConv}_{t}^{\text{box}}\left(\boldsymbol{x}_{t}^{\text{box}}, \boldsymbol{q}_{t-1}^{*}\right), \\ \boldsymbol{b}_{t} &\leftarrow \mathcal{B}_{t}\left(\boldsymbol{x}_{t}^{\text{box*}}\right), \end{split}$$

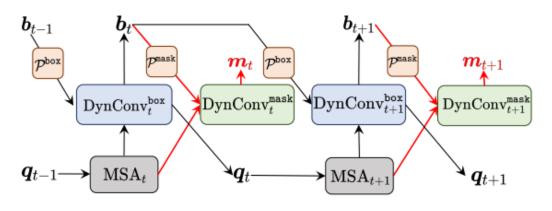








(b) Sparse R-CNN with vanilla mask head

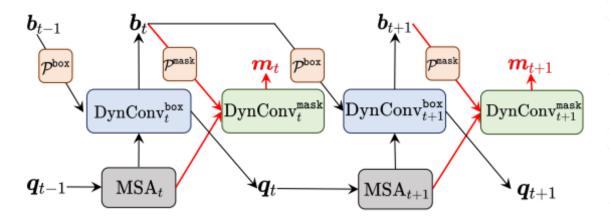


(c) QueryInst with dynamic mask head

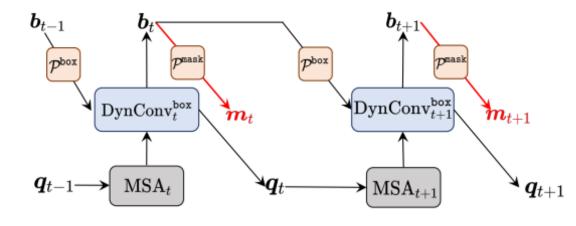
Approach

During training

During inference

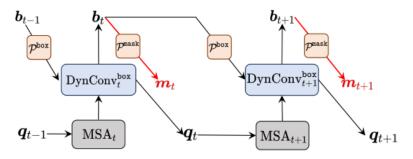


(c) QueryInst with dynamic mask head



(b) Sparse R-CNN with vanilla mask head

Comparisons with Cascade Ma



(b) Sparse R-CNN with vanilla mask head

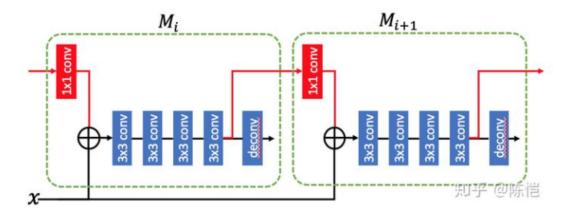
Туре	Cascade Mask Head [5]	HTC Mask Flow [9]	$\mathrm{DynConv}^{\mathtt{mask}}$	Fig.	AI
Non-query Based	✓	,			44
		√			44
	✓			Fig. 2 (b)	4:
Query Based		✓			4:
			✓	Fig. 2 (c)	44
		✓	✓		44

Table 4: Impacts of different mask head architectures on different frameworks. The

进阶第二步: Mask Information Flow

这一步起到了很重要的作用,对一般 cascade 结构的设计和改进也具有借鉴意义。我们首先回顾原始 Cascade R-CNN 的结构,每个 stage 只有 box 分支。当前 stage 对下一 stage 产生影响的途径有两条:(1) B_{i+1} 的输入特征是 B_i 预测出回归后的框通 Rol Align 获得的;(2) B_{i+1} 的回归目标是依赖 B_i 的框的预测的。这就是 box 分支的信息流,让下一个 stage 的特征和学习目标和当前 stage 有关。在 cascade 的结构中这种信息流是很重要的,让不同 stage 之间在逐渐调整而不是类似于一种 ensemble。

然而在 Cascade Mask R-CNN 中,不同 stage 之间的 mask 分支是没有任何直接的信息流的, M_{i+1} 只和当前 B_i 通过 Rol Align 有关联而与 M_i 没有任何联系。多个 stage 的 mask 分支 更像用不同分布的数据进行训练然后在测试的时候进行 ensemble,而没有起到 stage 间逐渐调整 和增强的作用。为了解决这一问题,我们在相邻的 stage 的 mask 分支之间增加一条连接,提供 mask 分支的信息流,让 M_{i+1} 能知道 M_i 的特征。具体实现上如下图中红色部分所示,我们将 M_i 的特征经过一个 1x1 的卷积做 feature embedding,然后输入到 M_{i+1} ,这样 M_{i+1} 既能得到 backbone 的特征,也能得到上一个 stage 的特征。



Experiments

Method	Backbone	Aug.	Epochs	APbox	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	FPS
Mask R-CNN [21]				41.3	37.5	59.3	40.2	21.1	39.6	48.3	14.0
CondInst w/ sem. [46]	ResNet-50-FPN	$640 \sim 800$	36	_	38.6	60.2	41.4	20.6	41.0	51.1	14.1
SOLOv2 [51]	Resnet-50-FFIN		30	40.4	38.8	59.9	41.7	16.5	41.7	56.2	13.8
QueryInst (5 Stage, 100 Queries)				44.5	39.9	62.2	43.0	22.9	41.7	51.9	13.5
Cascade Mask R-CNN [5]				44.5	38.6	60.0	41.7	21.7	40.8	49.6	10.4
HTC [9]	ResNet-50-FPN	$640 \sim 800$	36	44.9	39.7	61.4	43.1	22.6	42.2	50.6	3.1
QueryInst (100 Queries)	Kesiver-50-111v	040 ~ 800	30	44.8	40.1	62.3	43.4	23.3	42.1	52.0	10.5
QueryInst (300 Queries)				45.6	40.6	63.0	44.0	23.4	42.5	52.8	7.0
Cascade Mask R-CNN				45.7	39.8	61.6	43.0	22.4	42.2	50.8	8.7
HTC	ResNet-101-FPN	$640 \sim 800$	36	46.2	40.7	62.7	44.2	23.1	43.4	52.7	2.5
QueryInst (300 Queries)				47.0	41.7	64.4	$\boldsymbol{45.3}$	24.2	43.9	53.9	6.1
Cascade Mask R-CNN				46.2	40.0	61.7	43.5	22.5	42.5	51.2	8.7
HTC	ResNet-101-FPN	480 ∼ 800 w/ crop	36	46.3	40.8	62.6	44.3	23.0	43.5	52.6	2.5
Sparse R-CNN (300 Queries)	KCSINCI-101-111N		w/ crop	w/ crop 30 46.3	-	_	_	-	_	_	6.9
QueryInst (300 Queries)				48.1	42 .8	65.6	46.7	24.6	45.0	55.5	6.1
QueryInst (300 Queries)	ResNeXt-101-FPN w/ DCN	$480 \sim 800$ w/ crop	36	50.4	44.6	68.1	48.7	26.6	46.9	57.7	3.1
QueryInst (300 Queries) @ val	Swin-L	$400 \sim 1200$ w/ crop	50	56.1	48.9	74.0	53.9	30.8	52.6	68.3	3.3^{\top}
QueryInst (300 Queries)	Swin-L	$400 \sim 1200$ w/ crop	50	56.1	49.1	74.2	53 .8	31.5	51.8	63.2	3.3^{\top}

Experiments

Method	Backbone	AP_{val}	AP	AP_{50}	person	rider	car	trunk	bus	train	mcycle	bicycle
Mask R-CNN [21]	ResNet-50	36.4	32.0	58.1	34.8	27.0	49.1	30.1	40.9	30.9	24.1	18.7
BShapeNet+ [26]	ResNet-50	_	32.9	58.8	36.6	24.8	50.4	33.7	41.0	33.7	25.4	17.8
UPSNet [56]	ResNet-50	37.8	33.0	59.7	35.9	27.4	51.9	31.8	43.1	31.4	23.8	19.1
CondInst [46]	ResNet-50	37.5	33.2	57.2	35.1	27.7	54.5	29.5	42.3	33.8	23.9	18.9
CondInst [46] w/ sem.	DCN-101-BiFPN	39.3	33.9	58.2	35.6	28.1	55.0	32.1	44.2	33.6	24.5	18.6
QueryInst	ResNet-50	39.4	34.4	59.6	40.4	30.7	56.8	29.1	40.5	30.8	26.0	21.1

Table 2: Instance segmentation results on Cityscapes val $(AP_{val} \text{ column})$ and test (remain columns) split. The best results are in **bold**.

Method	Backbone	AP	AP_{50}	AP_{75}	AR_1	AR_{10}	FPS
MaskTrack R-CNN [57]	ResNet-50	30.3	51.1	32.6	31.0	35.5	22.1
SipMask-VIS [6]	ResNet-50	32.5	53.0	33.3	33.5	38.9	30.9
SipMask-VIS*	ResNet-50	33.7	54.1	35.8	35.4	40.1	30.9
STEm-Seg [1]	ResNet-50	30.6	50.7	33.5	31.6	37.1	4.4
STEm-Seg	ResNet-101	34.6	55.8	37.9	34.4	41.6	2.1
CompFeat [16]	ResNet-50	35.3	56.0	38.6	33.1	40.3	_
VisTR [53]	ResNet-50	34.4	55.7	36.5	33.5	38.9	30.0
VisTR	ResNet-101	35.3	57.0	36.2	34.3	40.4	27.7
QueryInst-VIS	ResNet-50	34.6	55.8	36.5	35.4	42.4	32.3
QueryInst-VIS*	ResNet-50	36.2	56.7	39.7	36.1	42.9	32.3

Table 3: Comparisons with state-of-the-art video instance segmentation methods on YouTube-VIS val set. Methods with superscript "*" indicates using multi-scale data argumentation during training. The best results are in **bold**.

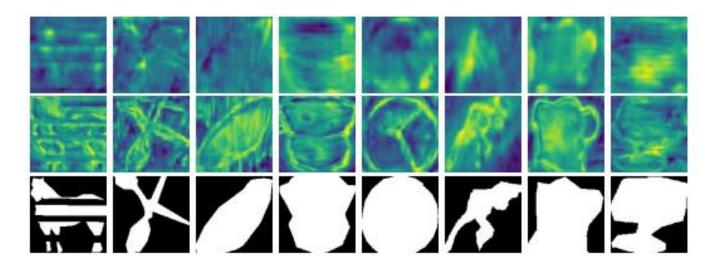


Figure 4: Effects of DynConv^{mask}. The first row shows mask features x^{mask} directly extracted from FPN. The second row shows mask features x^{mask*} enhanced by queries in DynConv^{mask}. Last row is ground-truth instance masks. The results show that mask features enhanced by queries yield more genuine and accurate details and carry more information of instances.

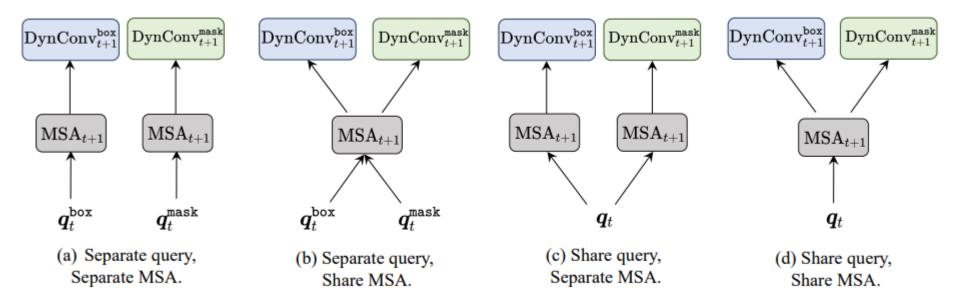


Figure 5: Illustration of 4 different query and MSA configurations. We use (d) as the default instantiation of QueryInst.

Shared MSA	Shared Query	APbox	$\Delta^{ extsf{box}}$	APmask	$\Delta^{\mathtt{mask}}$
		43.4	1	38.1	
✓		43.9	+ 0.5	$38.3 \\ 39.5$	+0.2
	✓	44.1	+0.7	39.5	+1.4
	✓	44.5	+1.1	39.8	+1.7

Table 6: Impacts of using shared query and MSA.



Figure 6: Object detection and instance segmentation qualitative results on COCO val split.

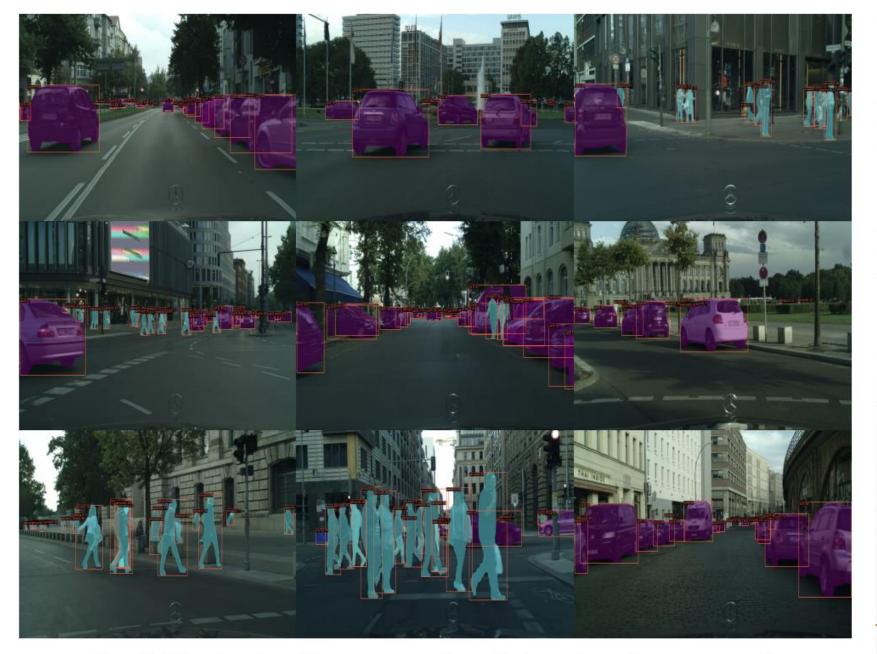


Figure 7: Object detection and instance segmentation qualitative results on Cityscapes test split.

Thanks